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Abstract— This paper presents a framework for gener-
ating time-optimal velocity profiles for a group of path-
constrained vehicle robots that have fixed and known
initial and goal locations and are required to maintain
communication connectivity. Each robot must follow a fixed
and known path, arrive at its goal as quickly as possible
(or at least not increase the time for the last robot to
arrive at its goal) and stay in communication with other
robots in the arena throughout its journey. The main
contribution of this paper is the formulation of the problem
as a discrete time nonlinear programming problem (NLP)
with constraints on robot kinematics, dynamics, collision
avoidance, and communication connectivity. We develop
Partition Elimination constraints that assist in ensuring that
the communication network is fully connected (no network
partitions). These constraints are enforced only when net-
work partitions would otherwise occur, an approach which
significantly reduces the problem size and the required
computational effort.

In addition, we introduce path-constrained jammer
robots with known paths and velocity profiles into the
scenario. These jammer robots have an effective jamming
range and disrupt all communications within this range.
Except for the jammers, all robots must remain outside this
jamming range at all times. We investigate the scalability
of the proposed approach by testing scenarios involving
up to fifty (50) robots. Solutions demonstrate (i) the
trade off between the arrival time and the communication
connectivity requirements in scenarios with and without
jamming; and (ii) the dependence of computation time on
the number of robots.

I. INTRODUCTION

The coordination of the motion of a number of robots
(say m) in a shared workspace so that they avoid colli-
sions is known as the multiple robot path coordination
problem [1], [2]. In previous work [3] we addressed this
problem under fixed communication connectivity con-
straints by generating time optimal velocity profiles. The
robots were confined to fixed paths and sought to arrive
from a set of initial points to specified final destinations.
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The one-hop communication constraint in [3] ensured
that each robot remains in immediate communication
range with k other robots, (k = 1,...,n) and not use any
intermediary robots as relays.

In this paper, we consider a more general problem,
where we seek to coordinate the movement of the robots
from initial locations to final destinations while using
intermediate robots for communication. Moreover, we
require that throughout the scenario each robot can com-
municate, directly or indirectly, with other other robots.
Thus the network never gets partitioned. We formulate
constraints called the “partition elimination constraints”,
which are enforced only when network partitions would
otherwise occur, an approach which greatly reduces the
problem size and the required computational effort.

Jammer robots are a part of the scenario, attempting
to disrupt communication of the non-jamming robots.
These jammers can be thought of as stationary or mobile
obstacles with an effective jamming radius. Once a robot
(other than a jammer robot) is within the jamming radius,
it loses communication with all other robots. Thus the
robots must try to stay out of the jamming ranges at all
times.

The problem is formulated as a nonlinear program-
ming (NLP) problem. The fixed paths of the robots
are represented by piecewise cubic spline curves. The
feasibility criteria for trajectories require that the robots’
kinematic and dynamic constraints be satisfied, along
with avoiding collisions and obeying the communica-
tion constraints (including the avoidance of partitions).
The spline paths are generated using Matlab, which is
interfaced with the modeling environment AMPL [4]. We
use the software package LOQO [5] with AMPL to solve
the NLP.

In this paper, the following assumptions are made

o All calculations are made by a central coordinator.

o Since this study deals with higher level velocity

planning, we assume that for each vehicle, there
exists a perfect lower level control to achieve the
planned position and heading angle without any
time delay.

o There is no slipping in the motion of the robots.

This is a valid assumption since we enforce kine-
matic (non-holonomic constraints, continuous first



and second derivatives of the spline paths) and
dynamic constraints (upper bounds on the velocities
and accelerations) which disallow such slippage.

o Free space propagation between vehicle antennas
is assumed. Factors such as multi path propagation,
fading, time delay and crosstalk are not considered.

o The path and velocity profile of the jammers are
known (in reality these will have to be estimated).

II. RELATED WORK

While a significant body of work was devoted to path
planning for mobile robots [1], [6], we focus our work
on the relatively untouched area of velocity planning
along predetermined routes. Indeed, more often than not
one does not get the liberty of planning an arbitrary
path around sparse obstacles, and must rather follow a
prescribed route. These prescribed routes can also be
thought of as the solutions to a path planning problem.

Several approaches have been used to address the
problem of path coordination of multiple robots [1],
wherein multiple robots with fixed paths coordinate with
each other so as to avoid collisions and reach destination
points. These approaches include the use of coordination
diagrams [7], constrained configuration space roadmap
[8], grouping robots with shared collision zones into
subgroups [2]. In [9], mixed integer linear programming
(MILP) formulations were used to generate continuous
velocity profiles for a group of robots that satisfy kino-
dynamics constraints, avoid collisions and minimize the
task completion time. In [3], we extended this body
of work by adding communication constraints to the
problem, incorporating the resulting nonlinearities, and
using state of the art interior point methods to solve the
resulting NLP [10].

III. PROBLEM FORMULATION
A. Robot Motion and Path

Consider a two-wheeled differential drive mobile
robot as shown in Fig. 1. The robot moves in a global
(X, Y) Cartesian co-ordinate plane and is represented by
the following kinematic model with an associated non-
holonomic constraint (that disallows sliding sideways).

z = vcos(h); =w (1)
Zsin(f) — ycos(d) = 0. 2)

y = vsin(0);

Here v and w are the linear and angular velocities of
the robot respectively; x, y and 0 are the coordinates of
the robot with respect to the global (X, Y) coordinate
system. Consider a group of m such mobile robots.
Each robot ¢ = 1,2,...,n is represented by a common
mathematical model (1) with associated non-holonomic

Fig. 1. Robot architecture and notations

constraint (2) and has a fixed path p’ of length len® to
follow, with a given start (origin) point o’ and a given
end (goal) point e’. P is the set of all the fixed paths of
each robot. p'(z(t),y(t)) € P,Vi = 1,2,..n. O is the
set of all start (origin) points. o' € O,Vi =1,2,..n. E
is the set of all end points. ¢! € E,Vi = 1,2,...n. The
Euclidean distance between two robots ¢ and j is denoted
by d'/. The robots are required to maintain a minimum
safe distance dgqf. from each other in order to avoid
collisions. At any given time step, the distance between
the current location and the goal point for robot ¢ is
given by d} ;. s* and w’ denote the speed and angular
velocity respectively of robot ¢ along its fixed path at a
given time.

We formulate this scenario as a discrete time problem
with the parameter ¢ representing steps in time. Tmax is
the time taken by the last robot to reach its end point. At
t = Tmax the mission is completed. If a robot reaches
the goal point before Tmax, it continues to stay there
till the mission is over. If required, such a robot can still
communicate with other robots.

Let M be the set of 14, communication jammers,
where each jammer m = 1,2,...,n4,, is a mobile robot
represented by (1) - (2) and has a fixed path with given
start and end points. The effective jamming range of
a jammer is djqm. In this study, all the jammers are
assumed to have same jamming radius.

Each robot follows a fixed path represented by a
two dimensional piecewise cubic spline curve, which is
obtained by combining two one dimensional piecewise
cubic splines z(u), and y(u), where the parameter u is
arc length along the curve. Let x(u) be the curvature
along the spline curve. For each robot ¢,

W' () = ' (w)w' (u) 3

These piecewise cubic splines have continuous first
derivatives (slope) and second derivatives (curvature)
along the curve. This property makes the path kinemat-
ically feasible. Furthermore, upper and lower bounds
on the speed, acceleration and angular speed (turning
rate) are enforced, thereby taking into account the robot
dynamics. The paths represented by the two dimensional



piecewise cubic splines along with the constraints on the
speed, accelerations and turn rates result in a kinody-
namically feasible trajectory. For a detailed discussion
on spline curve design and analysis, see [11] and its
references.

B. Communication Model

Each robot is equipped with a wireless transceiver
node. The Signal to Noise Ratio (SNR) experienced by
the receiver robots is calculated to determine whether the
robots are in communication range of each other. If the
SNR experienced by a receiver node placed on a robot
is above a predefined threshold 7, the two robots are
considered to be in communication range of each other.

Consider two robots that try to communicate with each
other at a given point in time. The Euclidean distance
between them is denoted by d. The signal transmission
power of the wireless node placed on the transmitter
robot is denoted by P,,.. The received signal power of
the wireless node placed on the receiver robot is denoted
by P.. The power experienced by the receiver robot node
is calculated using Friis’s equation

A «@
P, = P, GG, (m> , “)

where « is the path loss exponent. The noise is assumed
to be thermal (KT'BF’). A is the wavelength and is equal
to ¢/f, where ¢ = 3 x 10% m/s and f = 2.4 x 10° Hz.
The values of G; and G, (antenna gains) is assumed
to be 1. The values of « range from 1.6 (indoor with
line of sight) to 6 (outdoor obstructed) depending on the
environment. The value a = 2 corresponds to free space.

IV. MODEL FORMULATION

We seek to minimize Tmax, the time of arrival of
the last arriving robot, while each robot tries to remain
in one-hop communication range with at least k other
robots and network partitions are eliminated at all time
steps. The optimization is performed over the speeds of
the robots along the specified paths. We identify the time
instances when partitions may occur and eliminate them
by changing the velocity profiles of the robots at these
times. Since Tmax is not known a priori, we pick a
sufficiently large number of time steps T' (Tmax< 1) in
our model so as to get a feasible solution. For a given
value of k£ between 0 to n — 1, the problem described
by (5)-(21) is then solved.

A. Decision Variables

In (5)-(21), the main decision variables are the speeds,
s%(t), for vehicle i at time ¢. The values of the remaining
variables are dependent on the speeds, as described in

the following subsections on the problem constraints
(subsections C-I).

minimize Tmax + o Z d;oal(t) 5)
i,t

Vie{1,2,.n}, Vte{l,2,..T},
Vie{1,2,..n},j #i
Vm S {1, 2, ...njam}

subject to (z*(0),4'(0)) = o' (6)
(="(T),y"(T)) = €' N
u'(0)=0 ®)
u'(t) = u'(t — 1) + s (t)At )
(@' (8),y' (1)) = ps' (u'(¢)) (10)
Smin < Sl(t) < Smaz (11)
émzn S Sl(t) S S‘wuzz (12)
dij (t) 2 dsafe (]3)
d"(t) > djam (14)
0<A(t)<1 (15)
Al(t) éoal(t) =0 (16)

T
Vi, Tmax > (Z (1 . Ai(t))) (17)
t=0

0<C9(t) <1 (18)
1Y (t) = SNRY (t) — 7 (19)
CH ()7 (t) >0 (20)
S Ut >k (21)
e

B. Objective Function

Equation (5) represents the objective function to be
minimized. The first term of the objective function is
Tmax which represents the time taken by the last robot
to reach its goal point. A second term with a penalty
parameter o forces the robots to reduce the distance
between their current location and the goal position. This
term prevents the robots from stalling.

C. Path (Kinematic) Constraint

Constraints (6)-(10) define the path of each robot.
Constraints (6) and (7) form the set of boundary require-
ments that each robot ¢ has to start at a designated start
point o' and finish at a designated end point e’ at the
end of the planning horizon. Constraint (8) initializes
the arc length travelled, u, to zero value. Constraint
(9) increments the arc length at each time step based
on the speed of the robot. At is the discrete time



step. Constraint (10) ensures that the robots follow their
respective paths as defined by the cubic splines. The
function ps®(u’(t)) denotes the location of robot i at
time step ¢ after travelling an arc length of u along the
piecewise cubic spline curves.

D. Speed and Acceleration (Dynamic) Constraint

Constraints (11)-(12) are dynamic constraints and en-
sure that the speed (and hence, angular velocity) and
the acceleration, respectively, are bounded from above
and below. These constraints are determined by the
capabilities of the robot and the curvature of the paths
represented by the spline curve. Here we assume that the
curvature of the paths is within the achievable bounds
of the angular speed and radial acceleration of the
robots. Hence the angular speed required by the robots
corresponding to the optimal speed is always achievable
(and can be determined by equation (3)).

E. Collision Avoidance Constraint

Constraint (13) ensures that there is a sufficiently large
distance between each pair of robots to avoid a collision.

F. Communication Jamming Constraint

If robot ¢ is within jamming range of one or more
jammer robots, it loses all its capabilities to communicate
with the other robots. Accordingly constraint (14) is
added to ensure that each robot remains outside the
jamming range of the jammer robots at all times.

G. Definition of Tmax

As defined by constraints (15) and (16), A*(t) mea-
sures the number of time periods for which robot ¢ is not
at its destination. The equilibrium constraint (16) and the
bounds on Ai(t) (15) ensure that when dgoal(t) > 0,
A(t) = 0. Therefore, if A%(t) = 1 for all (i,t) with
d’ . (t) =0, the total amount of time it takes a robot i

goal
to reach its destination is

3 (1 — Ai(t)) (22)

The equilibrium constraint (16) cannot alone guarantee
that the property (22) will hold. However, constraint (17)
specifies Tmax as an upper bound for (22), and equation
(5) minimizes Tmax. Therefore at the optimal solution,

for the last robot(s) to reach its (their) destination(s),
A%(t) = 1 when robot i is at its destination at time ¢
and (17) will hold with equality.

Note that the solution obtained by including the con-
straints (15)-(17) is equivalent to the one obtained by
using the following mixed-integer definition:

Al(t) = 0 if (dfpar(t) # 0) (23)
= 1if (d}oai(t) = 0)

max 1-— A'(t 24
2 (2 (-aw)) e

It is, however, more advantageous for computational
efficiency of the algorithm to solve an NLP instead
of a mixed integer nonlinear programming problem
(MINLP). With recent research in handling equilibrium
constraints in NLPs, handling the resulting nonsmooth-
ness is not a complicating factor in the solution process.
For details on how the solver used in this study (LOQO)
handles equilibrium constraints, see [10].

H. One-hop Communication Connectivity Constraint

Constraints (18)-(21) define the requirement that each
robot must be in one-hop communication with at least k
other robots at all times. If there is a need for each robot
to communicate within one hop with a greater number
of robots (e.g., for contingency planning), the right-hand
side of constraint (21) will be increased.

Constraint (19) defines an intermediate variable, [*/ (¢),
that aids in defining the communications constraint.
[ (t) > 0 indicates that the two robots i and j are in one-
hop communication range whereas; [/ (t) < 0 indicates
that these two robots are not in one-hop communication
range of each other.

Constraint (20) then ensures that if there is no one-hop
communication between robots ¢ and j at time ¢, then
the variable C/ (t) must necessarily equal 0. That is, if
pairwise communication is lost, we have that [¥(¢) <
0 and since constraint (18) requires that the value of
C%(t) > 0, the only way to satisfy constraint (20) is
to have C%(t) = 0. If there is one-hop communication
between the two robots at time ¢, then C'%/(t) can take
on any value between 0 and 1, inclusive, as allowed by



constraint (18). Finally, constraint (21) ensures that for
each robot i at time ¢, at least k of the C¥(t), j €
{1,2,...n}, j # i are greater than zero.

1. Connectivity Partition Elimination Constraint

The one-hop communication connectivity constraints
will not necessarily prevent partition of the network to
non-communicating subgroups. A constraint of the form

Yo ciy=1 (25)
i€l Gl
for each subgroup I of size £k + 1,...,m — 1 at each
time period would ensure that there exists at least one
connection between each subgroup thereby resulting in
connectivity throughout the network. We will refer to
(25) as the “partition elimination” (P.E.) constraints.
The number of partition elimination constraints p to
be added to the problem expressed by (5)-(21) for all
possible partitions is given by

/2] n h{n
i=k4+1 2

where h =1 if n is even and n > 2k, and h = 0 otherwise.

Adding partition elimination constraints for all pos-
sible partitions for each time period to the problem ex-
pressed by (5)-(21) would increase its size exponentially.
Instead, we apply Algorithm 1 (also referred to as the
P.E. algorithm), which solves the problem without these
constraints first and then detects any partitions in the
solution. The PE. algorithm is a form of breadth first
search algorithm that searches the entire communication
connectivity graph to detect partitions. For each partition
detected, we add one constraint of the form (25) to (5)-
(21). The updated problem is re-solved and the process
is continued until no more partitions are detected. This
greatly reduces the size of the problem. By using the
partition elimination algorithm at each iteration, we solve
a relaxation of the actual problem.

V. SIMULATIONS AND RESULTS

A. Simulation Setup

The Matlab function spline () was used to gen-
erate piecewise cubic splines passing through randomly
generated waypoints. The spline paths are parametrized

by arc length u. The optimization model, defined by
(5)-(21) was implemented in the modeling environment
AMPL and the solver LOQO was used . The AMPL-LOQO
combination was implemented on a PC running RedHat
Linux 2.4.20-8 with 512MB of main memory and a
2.4GHz clock speed. In our numerical testing, we have
used LOQO Version 6.07 compiled with the AMPL solver
interface Version 20021031.

B. Simulations

We focus on the effect of the partition elimination
constraints and the presence of jammers on velocity
profile design for the group. We have tested our model
for scenarios that include up to fifty (50) mobile robots
and up to four (4) jammer robots, and a number of
communications constraints. In the following discussion,
we plot the spline curve paths of the robots with different
colors indicating different robots and different robot
groups. The origin and destination points of each robot
is indicated by a dot marking. The triangular markings
on the curves indicate the position of the robot in
the (X,Y) Cartesian coordinate plane at each step in
time while traveling at optimal speeds along the path.
The parameters used in our simulations are listed in
Table. I. For all the simulations the value of Py, is in
milliwatts and At = 1 second. In all the examples, the
robots are required to maintain one hop communication
connectivity with one other robot, i.e., £k = 1 in (21).

Algorithm 1 Partition Elimination (P.E.)

Require: n robots with fixed paths
Ensure: Eliminate partitions
repeat
Solve the model.
Let Done = FALSE
fort € {1,...,T} do
Let T = {1}.
foricI,j ¢ Ido
if C*7(t) > 0 then
I=10 {5}
end if
end for
ifI={1,...,n} then
Done = TRUE
else B
add the constraint Z C"(t) > 1 to the model
i€l,j ¢l

end if
end for
until Done = FALSE




TABLE I
PARAMETER VALUES USED FOR SIMULATIONS

dsafe 0.01 m Smin 0 Smax 2 m/s

Smin -1 m/s? S$maz | 0.5 m/sZ o 100

djam 0.45 m At 1s Sjam | 0 m/s?
T 45x 10~ ° T 10 o 2

Readers are referred to our previous work [3] to see the
effect of varying k on the velocity profiles of the robots.
In all plots, the triangular markings on different paths do
not overlap with each other completely at any point in
time. This observation indicates that the robots indeed
do not collide with each other at any point in time (thus
satisfying the collision avoidance constraint).
1) Effect of partition elimination constraints on the
velocity profile:
o 4 robots:
Fig. 2 shows the trajectories of the robots in a four
(4) robot scenario in presence (right side plot) and
absence (left side plot) of the partition elimination
constraints. In absence of the partition elimination
constraints, it is observed that all robots travel at the
maximum allowed speed at all times. In fact the
robots form two subgroups based on the physical
proximity of their paths and the one-hop communi-
cation constraint is always satisfied. Partitions are
detected at time periods 2 and 3.
After applying the partition elimination algorithm
to establish communication between the two sub-
groups of vehicles at time periods 2 and 3, the
trajectory of robot 2 changes. Robot 2 slows down

Trajectores for four (4 robots for k = 1 with no parton o

Trajectories for four (4) robots for k = 1 with partion elimination consiraints

Robot1 Robot 1

y(u)

Robot 3——, o Robot 3——,
v v

in order to maintain connectivity. In both cases, the
mission ends at Tmax = 8.

10 robots:

Fig. 3 shows the trajectories of the robots in a ten
(10) robot scenario in presence (right side plot) and
absence (left side plot) of the partition elimination
constraints. The velocity profiles of robots 2 and 3
change due to the partition elimination constraints,
and are demonstrated in Fig. 4. The transmission
power in this case is 1.3 mW and the transmission
range is 1.69 meters. Before applying the partition
elimination constraints, the value of Timax = 7. Af-
ter the partition elimination constraints were added,
the value increases to Tmax = 8.

20 robots:

Fig. 5 shows the trajectories of the robots in a
twenty (20) robot scenario in presence (right side
plot) and absence (left side plot) of the parti-
tion elimination constraints. The velocity profile of
Robot 1 changes due to the presence of the partition
elimination constraints. Since the paths of the robots
are very close to each other, the transmission power
required for feasibility in this case is 0.2 mW
which corresponds to a transmission range of 0.66
meters. Before applying the partition elimination
constraints, the value of Tmax = 7. After the par-
tition elimination constraints were added, the value
increases to Tmax = 8.

50 robots:

Fig. 6 shows the trajectories of the robots in a fifty
(50) robot scenario in presence (right side plot) and

Trajectories of 10 robots with k=1 without P.E. Trajectories of 10 robots with k=1 with P.E.

y(u)

o . o v

oo v v v v v =
x4 3 Lowly 3
A Robon% % Robon/Y
1 A
v v
:; v v"/; : | ;'v"'v'/' o
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Robot2 7 Robot3 iy { Robotz _~ Robot 3
.M _ﬁ&{;ﬁi\:

y(u)

w o )

Fig. 2. A 4 robot scenario with and without the partition elimination
constraints

) o T e

Fig. 3. A 10 robot scenario with and without the partition elimination
constraints



TABLE I
EFFECT OF n ON Tcomp AND PROBLEM SIZE REDUCTION

n Tmax Tmax Tcomp P p
no PE with PE
no PE | with PE algorithm algorithm
4 8 8 7.785 30 2
10 7 8 46.869s 5010 3
20 7 8 123.217s 5242670 1
50 7 9 1314.897s | 5.6295 x 10™° 1

absence (left side plot) of the partition elimination
constraints. It can be clearly observed that the robot
velocity profiles change considerably in order to
comply with the communication requirements. The
transmission power in this case is 2.2 mW and the
transmission range is 2.2 meters. The value of Tmax
increases from 7 to 9 after the partition elimination
constraints are added.

The following observations are made

The partition elimination constraints make a differ-
ence; they make the robots change their speeds in
order to maintain connectivity.

Typically, the “fast” robots whose times of arrival
at their respective destinations are less than Tmax
change their velocity profiles to comply with the
new communication connectivity constraint.

2) Scalability and problem size reduction:

Speed profile of Robot 2 in a 10 robot scenario

—®—Flobot 2 withoul P.E. - no jammer:
) —a—Robot 2 with P.E. - no jammers.
2| +— Robot 2 with P.E. — with jammers
Bt D = 8
3 ~
&1 - 1
ost * 4
= + g D ¢ *
time
Speed profile of Robot 3 in a 10 robot scenario
! ! ! ! —®—Robot 3 without P.E. — no Jammer:
= Robot 3 with P.E. - no jammers
T +— Robot 3 with P.E. — with jammers
O 1
@
@
% ' + 4
osl- 1
9

time

Fig. 4. Velocity profiles of Robot 2 and Robot 3 in a 10 robot scenario

with

and without the partition elimination constraints in absence and

presence of jammers

Trajectories of 20 robots with k=1 without P.E. Trajectories of 20 robots with k =1 with P.E.

RO

yw)

Fig. 5. A 20 robot scenario with and without the partition elimination
constraints

o Scalability with respect to the number of robots n:

We demonstrate the effect of increasing the number
of robots n on the computational time. Table II
summarizes the results obtained in cases of 4, 10,
20, and 50 robots. The total computational time
Tcomp is measured in seconds and is reported along
with the values of Tmax for all cases with and
without the PE algorithm. It is observed that Tcomp
increases with the increase in the number of robots.
Problem size reduction:

In our computational experience it is observed that
with the use of the P.E. Algorithm in the simulated
scenarios, the number of partition elimination con-
straints p added to the problem are greatly reduced,
(see Table II).

For the earlier problem with 4 vehicles, k=1, and T
= 10, we would have had to add 30 partition elimi-
nation constraints if we included all such constraints

Trajectories of 50 robots with k=1 with P.E.

Y

RCH

Fig. 6. A 50 robot scenario with and without the partition elimination
constraints



Trajectories of 10 robots with P.E. with no jammers Trajectories of 10 robots with jammer with P.E.
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Fig. 7. A 10 vehicle scenario in absence and presence of 4 jammers
traveling at constant speed. The speeds of the robots change in order
to avoid being jammed.

1
in the problem since there would be 3 possible

partitioned subgroups of 2 robots per subgroup at
each time period. In this example, by using PE.
algorithm only 2 of these constraints are added, one
at time step 2 and the other at time step 3.

3) Effect of presence of jammer robots on the velocity
profile: For aten robot scenario, Fig. 7 shows trajectories
of the robots in absence and presence of a set of 4
jammers. We consider four jammer robots with (black
colored) spline paths that move at a constant, prede-
termined speeds Sjqm. The triangular markings show
the position of the jammers at different time steps.
The partition elimination algorithm is applied. When
constraints of the form (14) are added to the model, the
robots change their velocity profiles in order to remain
outside the jamming distance of the jammer d;q,. The
velocity profiles of Robots 2 and 3 are indicated in the
Fig. 4. The velocity profiles of these robots are different
when compared to the case with no jammer. The value
of Tmax is 8 in both cases. In this case, s;4m; = 0.6 m/s.

VI. CONCLUSIONS

Using the proposed framework, we formulated the
problem as a NLP and generated time optimal velocity
profiles for a group of path constrained mobile robots
with fixed initial and goal points that were subject to
kinodynamic and collision avoidance constraints and
were required to maintain connectivity through out the
network by avoiding network partition. Furthermore,
we generated time optimal velocity profiles for this

group of robots in the presence of jammer robots. We
reported on the scalability of the proposed approach by
investigating scenarios involving up to 50 robots. Finally,
it was observed that the P.E. algorithm developed in this
paper significantly reduces the number of P.E. constraints
added to the optimization problem resulting in the sce-
narios considered, thereby reducing the overall problem
size. Future efforts will be directed towards applying this
paradigm in a decentralized and distributed fashion by
taking into account any stochastic disturbances affecting
the system and comparing the results with the proposed
centralized approach.
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